Abstract

Preparation of a Cu (II) chelate of bis(salicylaldehyde)ethylenediamine was carried out directly in epoxidized rape oil via a water/oil microemulsion reactor. Detailed characterization of the friction of boundary lubrication produced by epoxidized rape oil with and without the Cu (II) chelate of bis(salicylaldehyde)ethylenediamine was performed in reciprocating sliding tests with a microtribometer. In the presence of a modification of the epoxidized rape oil with 2 wt % of the Cu (II) chelate of bis(salicylaldehyde)ethylenediamine, the friction coefficient decreased by 15%. The Cu (II) chelate of bis(salicylaldehyde)ethylenediamine served as the additive in the epoxidized rape oil and self-assembled on the surface of 100Cr6 steel. The self-assembled monolayer was detected with atomic force microscopy and scanning electron microscopy, and characterized with cyclic voltammetry. It was verified by energy dispersive spectroscopy and X-ray photoelectron spectroscopy analyses that steel/steel rubbing pairs underwent a selective transfer of organic substance and copper, as a result of lubrication with the modified lubricant. It indicated that the modification of epoxidized rape oil with Cu (II) chelate of bis(salicylaldehyde)ethylenediamine led to wear self-repair on the steel surface, with selective transfer of a film of organic substance and copper metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.