Abstract

Polyester matrix composites reinforced by ceramic fillers have significantly better characteristics such as super wear resistance, high strength and low density than unreinforced materials. However, prohibitive costs and stability of properties pose challenge for the researchers in the process of development of composites. To address these issues, composites are being developed using waste materials as reinforcement for effective utilization of industrial wastes. The present investigation aims to develop red mud filled polyester composites (with different weight fraction) and characterize its mechanical and tribological properties. The engineering application of composites demands that it should have high wear resistance, low density and high tensile strength. In order to assess the behavior of composites satisfying multiple performance measures, grey-based Taguchi approach has been adopted in the present work. Optimal factor setting has been suggested to improve multiple responses viz., specific wear rate, density and tensile strength of the composite product. Optimal setting has been validated using confirmatory test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.