Abstract
Water vapor variations associated with a meso-γ scale convection were investigated using GNSS (Global Navigation Satellite System) derived PWV (precipitable water vapor) and high resolution numerical model data with a 250 m horizontal grid interval. A rapid increase of GNSS-derived PWV that occurred prior to the initiation of surface rainfall was well simulated by the numerical model.In the model, PWV values began to increase 16 min before the rainfall occurred at the surface. A local maximum of PWV was formed because of the generation of shallow free convection and surface water vapor flux convergence due to a lifting of an air parcel at approximately 1 km elevation by a preceding surface wind convergence. Due to the existence of a stable inversion layer between 2.2 and 3.5 km elevation, the shallow free convection took 11 min to rise above the inversion layer to form a deep convection. These results suggest that observation of local distributions of GNSS-derived PWV is useful for monitoring the generation of deep moist convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.