Abstract
Vultures provide invaluable ecosystem services and play an important role in ecosystem balancing. The number of native vultures in India has declined in the past. Acquiring present knowledge of their habitat spread is essential to manage and prevent such a decline. It is envisaged that ongoing climate crisis may further cause change in habitat suitability and impact the existing population. Therefore, this study in Central India—a vulture stronghold, is aimed at predicting habitat changes in the short and long term and present the data statistically and graphically by using Species Distribution Model. MaxEnt software was chosen for its advantages over other models, like using presence-only data and performing well with incomplete data, small sample sizes and gaps, etc. Global Climate Model ensemble (CCSM4, HadGEM2AO and MIROC5), was used to get better prediction. Fourteen robust models (AUC 0.864–0.892) were developed using data from over 1000 locations of seven vulture species over two seasons together. Selected climatic and other environmental variables were used to predict the current habitat. Future prediction was based on climatic variables only. The most important variables influencing the distribution were precipitation (bio 15, bio 18, bio 19) and temperature (bio 3, bio 5). Forest and water bodies were the major influencers within land use-landcover in the current prediction. At finer scale, while extremely suitable habitat area decreased and highly suitable area increased over time, the total suitable area marginally increased in 2050 but decreased in 2070. For broader consideration, net loss in suitable area was 5% in 2050 and 7.17% in 2070 (RCP4.5). Similarly, in the RCP8.5 this was 6% in 2050 and 7.3% in 2070. The data generated can be used in conservation planning and management and thus protecting the vultures from any future threat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.