Abstract

This paper presents the analysis and study of voltage collapse at any converter bus in an AC system interconnected by multiterminal DC (MTDC) links. The analysis is based on the use of the voltage sensitivity factor (VSF) as a voltage collapse proximity indicator (VCPI). In this paper the VSF is defined as a matrix which is applicable to MTDC systems. The VSF matrix is derived from the basic steady state equations of the converter, control, DC and AC networks. The structure of the matrix enables the derivation of some of the basic properties which are generally applicable. A detailed case study of a four-terminal MTDC system is presented to illustrate the effects of control strategies at the voltage setting terminal (VST) and other terminals. The controls considered are either constant angle, DC voltage, AC voltage, reactive current and reactive power at the VST and constant power or current at the other terminals. The effect of the strength of the AC system (measured by short circuit ratio) on the VSF is investigated. Several interesting and new results are presented. An analytical expression for the self VSF at VST is also derived for some specific cases which help to explain the number of transitions in VSF around the critical values of SCR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.