Abstract
In the present work, a high power microwave oscillator—reltron has been analyzed to investigate the virtual cathode formation mechanism during the beam-wave interaction. In reltron, a side coupled modulation cavity is used as its RF interaction structure containing three metal grids along the longitudinal direction. The space charge current responsible for the virtual cathode and its steady state electric field distribution has been analyzed. Space charge and beam impedance conditions for efficient device operation have been demonstrated. It has been shown that during the beam-wave interaction in the device, first a virtual cathode forms in the post-acceleration gap, and then the second virtual cathode develops between the first and second grids of the modulation cavity. These two virtual cathodes co-exist and cause the formation of a third virtual cathode between the second and third grids. At this instant, only the third virtual cathode remains, and for sustained device oscillation, this process repeats periodically in the device. The present study would be useful in understanding the beam-wave interaction mechanism as well as the design and development of efficient reltron devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.