Abstract
Studies of ionic conductivity and structures in which it can be achieved are of great importance for the development of modern batteries. The use of new materials will allow avoiding such typical disadvantages of batteries as short service life, low capacity and leaks. In this article we present the results of our study of the ionic conductivity in boron carbon nanolayers. We have simulated three types of boron carbon nanolayers containing different amounts of boron. The studies have been carried out using the MNDO method within the framework of the molecular cluster model and the DFT method with the B3LYP functional and the 6−31G basis. To study the ion conduction process we have simulated vacancy formation for each type of the nanolayers and studied the energy and electronic characteristics of these processes. We show that 25 % boron substitution is the most energetically favorable for vacancy formation. We have also simulated vacancy migration and determined the thermal conductivity as a function of temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.