Abstract

The impact of UV aging on the characteristic properties of synthesized polyurethane (PUs) from castor oil and transesterified castor oil with palm oil based isocyanate and 1,4 butanediol was investigated at different exposure time of 0, 250, 500, 750 and 1,000 h, respectively. The aging properties of the PU films were analyzed through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) and Tensile tests. The PU films derived from castor oil showed noticeable changes in chemical structure after 250 h of UV exposure owing to chain scission of the urethane group. A considerable decrease in the thermal and tensile properties of the developed PU films was observed due to the plasticization phenomenon. SEM micrographs revealed morphological changes through the appearance of cracks and blisters composed of primary amines on the surface of exposed PU films. However, PUs derived from transesterified castor oil with a higher hydroxyl value exhibited improved UV resistance characteristics due to higher crosslinking and degrade only after 750 h of exposure. Thus, the synthesized green PUs based on transesterified castor oil with palm oil based isocyanate compositions can be candidate materials for developing UV resistant coating material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call