Abstract

An ultraviolet photon counting imaging system based on charge induction readout was built and its structure, working principle and spatial resolution are reported. The single photon stream can be obtained via atmospheric dispersion, some weakeners, and narrow-band optical filters. A photo-electron produced in microchannel plate is multiplied, forming a charge cloud, which is collected on the Ge film and then detected through capacitive coupling by a PSA located a few millimeters behind the Ge film. The signal data from the anode is acquired and processed with software after being transformed, filtered and shaped by a charge-sensitive preamplifier and a main amplifier in sequence. Finally, a 30-minute counting image is obtained. The resolution of this system can reach 150 micrometers as tested with the resolution board, and the influence of Ge film resistivity and its substrate thickness on the performance of this system is also analyzed. The system is beneficial in good imaging properties and time resolution to bioluminescence, astronomy and nuclear radiant detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.