Abstract

Thrombosis is a common medical entity associated with many forms of cardiovascular disease including myocardial infarction and stroke. Recently, ultrasound thrombolysis has emerged as a promising technique for thrombosis treatment by delivering acoustic waves onto blood clots. In this study, an ultrasound thrombolysis method is presented using an acoustic bubble-based microfluidic device. With acoustic actuation, microstreaming flow is created in the microchannel by oscillating bubbles, breaking up the blood clots in blood samples in a few milliseconds. In a low-frequency field, the effects of bubble size on microstreaming patterns and thrombolysis have been experimentally studied. Using image processing techniques, we have quantitatively investigated the relationship between the input signal and the thrombolysis performance. Additionally, the viability test proved that there are no significant detrimental effects on the blood cells after acoustic actuation. This acoustic bubble-based microfluidic device is demonstrated to be a promising platform for quantitative analysis of ultrasound thrombolysis. It opens up possibilities for future development of ultrasound thrombolysis devices for the diagnosis and treatment of heart diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.