Abstract

To analyse heat and mass transfer in a metal–hydrogen reactor, the hypothesis that disregards the radiative heat transfer in the reactor, is typically used. In this paper, we take into account the radiative heat transfer and we test the validity of this hypothesis in the case of the LaNi 5 and in the case of the magnesium. A theoretical model is conducted for the two-dimensional system where conduction, convection radiation and chemical reaction take place simultaneously. This model is solved by the finite volume method. The numerical simulation is used to present the time–space evolutions of the temperature and the hydride density in the reactor and to determinate the sensitivity to some parameters (absorption coefficient, scattering coefficient, reactor wall emissivity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.