Abstract
We present a study of inertial modes in a differentially rotating spherical shell (spherical Couette flow) experiment with a radius ratio of $\eta = 1/3$. Inertial modes are Coriolis-restored linear wave modes which often arise in rapidly rotating fluids. Recent experimental work has shown that inertial modes exist in a spherical Couette flow for $\Omega_{i}<\Omega_{o}$, where $\Omega_i$ and $\Omega_o$ is the inner and outer sphere rotation rate. A finite number of particular inertial modes has previously been found. By scanning the Rossby number from $-2.5 < Ro = (\Omega_{i}-\Omega_{o})/\Omega_{o} < 0$ at two fixed $\Omega_{o}$, we report the existence of similar inertial modes. However, the behavior of the flow described here differs much from previous spherical Couette experiments. We show that the kinetic energy of the dominant inertial mode dramatically increases with decreasing Rossby number that eventually leads to a wave-breaking and an increase of small-scale structures at a critical Rossby number. Such a transition in a spherical Couette flow has not been described before. The critical Rossby number scales with the Ekman number as0 $E^{1/5}$. Additionally, the increase of small-scale features beyond the transition transfers energy to a massively enhanced mean flow around the tangent cylinder. In this context, we discuss an interaction between the dominant inertial modes with a geostrophic Rossby mode exciting secondary modes whose frequencies match the triadic resonance condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.