Abstract
BaTiO3/(WO3)x ceramics (where x = 0, 0.5, 1, 2 and 5 wt%) were prepared by solid state reaction. X-ray powder diffraction, scanning electron microscope, Fourier transform-infrared spectroscopy and ultraviolet–visible diffuse reflectance spectrophotometry were used to investigate the structure, morphology and optical properties, respectively. The electrical and dielectric properties were also performed for different synthesized ceramics. A pure phase was obtained for x = 0.5 wt% ceramic, nevertheless a secondary phase was detected for x ≥ 1 wt% ceramics. The grains size increases for x = 0.5 wt% ceramic and then reduces abruptly with further increasing WO3 content. The increase of grains size and the absence of impurities were all efficient to enhance the dielectric properties. A suitable WO3 content leads to obtain ceramics having high dielectric constant and low tangent loss, which is encouraging for radio frequencies and microwaves applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.