Abstract

The paper presents the results of theoretical and experimental research on tribotechnical characteristics: tool wear on the back surface, tool durability period, critical length of the cutting path before blunting, adhesion component of the friction coefficient, contact processes, temperature, and force dependences for the application of innovative nanostructured multilayer composite coatings on a tool for milling of titanium alloys. The proposed thermodynamic model of cutting tool wear allows us to determine the ways by which cutting tool wear intensity decreases and the conditions of increase in cutting tool wear resistance with wear-resistant coatings. A substantial increase in wear resistance of end mills when processing titanium alloys with the use of innovative multilayer nanostructured coatings is established, in particular an improvement of an average of 1.5–2 times. These positive results are related to a significant decrease in temperature–force loading in the cutting zone, a decrease in the friction coefficient (adhesion component), and the phenomenon of adaptation (self-organization) of friction surfaces during cutting by tools with wear-resistant coatings, contributing to the formation of films of various compounds with shielding, protective, and lubricating properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.