Abstract

We have studied transverse momentum distributions of charged particles produced in pp and Pb–Pb collisions at [Formula: see text] TeV and 5.02 TeV in the pseudorapidity interval [Formula: see text] and transverse momentum range [Formula: see text][Formula: see text]GeV/[Formula: see text]. We simulated data using EPOS-LHC, EPOS-1.99 and QGSJETII-04 models. The simulation data is compared with the ALICE experimental data values at [Formula: see text] TeV and 5.02 TeV for pp and most central Pb–Pb collisions. It has been observed that, EPOS-LHC and QGSJETII-04 models explain the experimental results for pp collision at [Formula: see text] TeV and 5.02 TeV. The behavior of nuclear modification factors has been studied. The simulation codes of all three models EPOS-LHC, EPOS-1.99 and QGSJETII-04 overestimate the experimental results at low transverse momentum interval: [Formula: see text] GeV/[Formula: see text], for Pb–Pb collisions at [Formula: see text] TeV and 5.02 TeV. However, only EPOS-LHC model can explain the experimental data at high transverse momentum in the range: [Formula: see text] GeV/[Formula: see text]. EPOS-1.99 and QGSJETII-04 underestimate in the region of Cronin effect and cannot give satisfactory estimates for the [Formula: see text] values for which [Formula: see text] demonstrates stronger suppression because of the collective parton effect. It can be inferred that these effects are not taken into account in EPOS-1.99 and QGSJETII-04 models. These models, however, satisfactorily explain the ALICE experimental data in the ranges of [Formula: see text] for which nuclear modification factor [Formula: see text] shows rising trend.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call