Abstract

Operation in corrosive media and/or at high temperatures requires improved characteristics of the performance and durability of filtering equipment. The Ti – Al intermetallic system combines low density with high strength and exhibits high resistance to oxidation and corrosion at elevated temperatures. We present the results of studying high-temperature Ti – Al cermet products (filters) with nanoscale pores. Filters were obtained from a mixture of Ti and Al powders (mass ratio 40:60) by thermal explosion. XRD methods showed that the synthesized material consists of two main phases: TiAl3 and Al2O3. The microstructure analysis revealed the presence of large-sized TiAl3 structures and spherical Al2O3 aggregates enveloped by nanostructured TiAl3. Moreover, nanoscale fibrous TiAl3 compounds forming a multilevel developed cobweb-like structure are observed in the entire volume of the pore space of the material. The open porosity of the material was 48%, the pore size was 0.1 – 0.2 μm, the efficiency of the porous material was 99.999%, the resistance to gas flow was 100 mm of water column, and the filtration index was 0.062. Thermal tests revealed the possibility of effective use of filters under conditions of elevated (up to 800°C) temperatures and corrosive media due to the chemically stable and heat-resistant binary structure of the material. The results obtained can be used to improve the methodology of the development and operation of high-temperature cermet filters based on Ti – Al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call