Abstract
A 3D finite element model of bolt composite joint has been established to determine the stress distribution on the contact surface. The effects of clamping torque and friction on the contact stress and interlaminar normal stress are considered. From the analysis results, contact stress is bared mainly by the 0° layer. The distribution and magnitude of contact stress are conducted by friction. The effect of clamping torque on interlaminar normal stress is very strong. A 3D damage user subroutine is added to the FEM to simulate the damage of joint. By the means of damage simulation, the initiation and progression direction of three types damage are predicted. Matrix cracking and fiber-matrix shear occur at first, and fiber buckling is founded subsequently. The matrix cracking and fiber-matrix debonding initiate at circumferential angle 45°and 135°, and fiber buckling initiate at the 0° layer on the bearing plane. The friction and bolt clamping torque can restrain damage initiation and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.