Abstract

Thermophysical properties are studied: thermal conductivity, heat capacity and thermal diffusivity of spatially reinforced carbon-carbon composite materials. A structural model is proposed for thermal conductivity levels at 300 and 2500 K. Results of calculations are confirmed in manufacturing practice and studies of material properties. It is shown that anisotropy of thermal conductivity levels leads to a nonuniform thermal state of refractory carbon composite working surface fragments. It is established that structure formation for the surface of a carbon-carbon refractory wall is connected with composite components structural state inhomogeneity. Approaches are proposed for increasing the working surface life for refractory carbon materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.