Abstract

Thermal immobilization of copper contaminants in soil analogue minerals, quartz and kaolin, at low temperatures such as 300 degrees C is studied to corroborate its technical feasibility as a method for soil remediation. We use a synchrotron-based, X-ray absorption spectroscopy (XAS) technique to study the speciation of and the local structure around copper in the soil analogues that are thermally treated at 300-900 degrees C for 1 h. The toxicity characteristic leaching procedure (TCLP) method is employed to investigate the leaching behavior of copper compounds. CuO, being predominately transformed from Cu(OH)2 with a lesser amount from Cu(NO3)2 by 1-h heat application at 300-900 degrees C, is identified by the spectroscopy of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) as the key species that is leaching-resistant due to its low solubility and its chemisorption onto the soil analogue minerals. Fourier transform of EXAFS spectrum of the Cu-doped kaolin heated at 900 degrees C for 1 h indicates that the intensity of Cu-Cu peaks (2.50 and 5.48 A, both without phase shift correction) is either relatively smaller or disappearing as compared with that of kaolin samples heated at 300 and 500 degrees C. The EXAFS analysis suggests that the Cu solid phase in the 900 degrees C kaolin sample is different from the lower temperature samples, the 900 degrees C SiO2 sample, and the Cu standards. The leaching studies also support the formation of a less soluble phase in the 900 degrees C kaolin sample. An increase of heating temperature, in the range of 105-900 degrees C, reduces the Cu leaching percentage; this reduction trend is more marked for Cu-doped kaolin than for Cu-doped SiO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.