Abstract

Half-Heusler alloys, a non-centrosymmetric structure variant of the Heusler type, create a category of advanced thermoelectric materials. The thermal and phase stability of half-Heusler alloys TiFe1.33Sb and TixNb1-xFeSb (x = 0, 0.15), prepared by various techniques (hot pressing, ball milling or high-energy ball milling and hot pressing, as well as in one case with additional annealing), have been studied by means of differential thermal analysis and the Knudsen effusion method. The results from the measurement of phase transformations and evaporation of antimony, as the volatile element, supported by microstructure measurements and by diffusion profiles are presented and discussed in view of the long-term operation stability of the thermoelectric materials investigated. The alloys TiFe1.33Sb and TixNb1-xFeSb have all evidenced only a slight evaporation of antimony and have proven their long-term stability at temperatures well above the operation temperature of ~873 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.