Abstract
Transient and steady state laser melting problems are numerically simulated for steel and Al-4.5% Cu. Enthalpy and apparent capacity methods are used to solve the energy equation, and the momentum equations are solved in the liquid domain and mushy zone with the SOLA-VOF algorithm. Using a laser with a top-hat profile, a wide range of studies are performed by varying the beam power density and the beam radius. The streamline plots show that the flow pattern is dependent on the strength of the rotating cell along with heat flux. It is found that the shape of the pool, the surface velocity, and the surface temperature are quite different from those without convection in the mushy zone. Convection in the mushy zone plays an important role in heat transfer and fluid flow during laser melting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.