Abstract
The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.