Abstract

Generation of ultra-thin oxide layers (in the nanometer range) is currently a technological lock for numerous applications such as microelectronics, spintronics or even molecular electronics. A precise study of the stages of growth of Mg is essential before studying the growth of the oxide. In this work we report and discuss an experimental study of the very first stages of Mg growth onto Si(100) by Scanning Tunneling Microscopy-Spectroscopy (STM-STS), Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). First, we have shown that an amorphous underlayer is formed onto the silicon substrate for Mg deposits of 0.25 monolayers (ML). This underlayer is attributed to a Mg2Si silicide formed at RT during Mg deposition. Then, using an original growth method based on alternate cycles of magnesium monolayer adsorption and room temperature (RT) oxidation, we did grow ultra-thin magnesium oxide films onto Si(100). Our study revealed that the ultra-thin Mg2Si layer at the MgO/Si(100) interface acts as a diffusion barrier and prevents oxidation of the highly-reactive silicon during magnesium oxide growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call