Abstract

This article presents detailed experimental and theoretical studies of the satellite fluorescence lines observed when the , (, ) electric quadrupole transition (E2) is excited in a room temperature vapor of rubidium atoms. The initial state of this E2 transition is prepared by a narrow linewidth (9 MHz) laser locked to one of the dominant D2 hyperfine excitations for zero-velocity atoms. Effects due to the selection of different atomic velocity classes in this preparation step are responsible for the presence of several satellite lines that can be found in the fluorescence decay spectra of both 85Rb and 87Rb. Compared to the main lines, these satellites do not show a strong dependence on the relative linear polarization directions of the lasers used in the preparation and the electric quadrupole steps. The relative intensities of the satellites decrease as the intensity of the preparation laser increases. Results of a rate equation calculation that explicitly includes selection-of-velocity effects indicate that optical pumping plays a central role in determining the relative intensities and the polarization dependence of the satellite lines. When the preparation laser is locked to the low-F cyclic transition in 87Rb, six lines were found in addition to the lone electric quadrupole transition for zero velocity atoms. In this case, the calculated spectrum is necessary for the correct interpretation of the experimental results, clearly indicating that optical pumping and selection of velocities are responsible for these six additional electric quadrupole lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.