Abstract

Static magnetic field non-uniformity and gradient magnetic field non-linearity can be considered as the causes of geometric distortion in MRI images. The impact of a distortion in imaging such as whole body imaging or whole spine imaging can be serious. A standard 2D-distortion correction method does not correct the distortion in the slice encoding direction. This study examined the effect of 3D-distortion correction with a correction effect in both the imaging plane and the slice-encoding plane using three MRI devices with differing static magnetic field intensities and boa diameters. Imaging of a nickel sulfate bottle phantom attached to the MRI device was conducted using a CT scan to measure the distortion rate based on the CT image. The result of the distortion rate at -39.1% in the Z-axis direction was reduced to -1.3%, and the distortion rate at about -9.8% in the magnetic X-axis was reduced to -1.7%. In addition, the reduction effect was greater on the 70 cm boa device compared to the 60 cm boa device, and it was also greater at 1.5 T compared to 3 T. 3D-distortion correction is believed to be useful for wide scope imaging using large FOV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.