Abstract

This work is devoted to modeling the dynamics of large molecules. The key issue in modeling the dynamics of real molecular systems is to correctly represent the temperature of the system using the available theoretical tools. In most works on molecular dynamics, vibrations of atoms inside a molecule are modeled with enviable persistence, which has nothing to do with physical temperature. These vibrations represent the energy internal to the molecule. Therefore, it should not be present in problems in the dynamics of inert molecular systems. In this work, by means of classical mechanics, it is shown that the simplest system containing only three molecular bodies, due to multiple acts of pair interactions of these bodies, reproduces the temperature even in an extremely complex unstable motion of the system. However, at the same time, it is necessary to separate the stochastic part of the movement from the deterministic one. Calculations also show that translational fluctuations in the motion of molecules make the greatest contribution to temperature. The contribution of rotational energy to the total energy of fluctuation motions is small. It follows from these results that the thermal state of the system is determined only by the translational temperature. The latter, in turn, opens up possibilities for a simplified description of many complex systems composed of carbon molecules such as fullerenes and nanotori.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.