Abstract

The undercooling of flip-chip Pb-free solder bumps was investigated by differential scanning calorimetry (DSC) to understand the effects of solder composition and volume, with and without the presence of an under bump metallurgy (UBM). A large amount of the undercooling (as large as 90 °C) was observed with Sn-rich, flip-chip size solder bumps sitting in a glass mold, while the corresponding undercooling was significantly reduced in the presence of a wettable UBM surface. In addition, the solidification of an array of individual solder bumps was monitored in situ by a video imaging technique during both heating-up and cooling-down cycles. Data obtained by the optical imaging method were used to complement the DSC thermal measurements. A random solidification of the array of bumps was demonstrated during cooling, which also spans a wide temperature range of 40–80 °C. In contrast, an almost simultaneous melting of the bumps was observed during heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.