Abstract

In the ideal pharmacokinetic-dynamic (PK-PD) model for calculating the predicted effect-site concentration of propofol (Ce(PROP)), for any Ce(PROP), the corresponding hypnotic effect should be constant. We compared three PK-PD models (Marsh PK with Shüttler PD, Schnider PK with fixed ke0, and Schnider PK with Minto PD) in their ability to maintain a constant bispectral index (BIS), while using the respective effect-site-controlled target-controlled infusion (TCI) algorithms. We randomized 60 patients to Group M (Marsh's model with k(e0)=0.26 min(-1)), Group S1 or Group S2 (Schnider's model with a fixed k(e0)=0.456 min(-1) or a k(e0) adapted to a fixed time-to-peak effect=1.6 min, respectively). All patients received propofol at a constant rate until loss of consciousness. The corresponding Ce(PROP), as calculated by the respective models, was set as a target for effect-site-controlled TCI. We observed BIS for 20 min. We hypothesized that BIS remains constant, if Ce(PROP) remains constant over time. All patients in Group M woke up, one in Group S1 and none in Group S2. In Groups S1 and S2, BIS remained constant after 11 min of constant Ce(PROP), at a more pronounced level of hypnotic drug effect than intended. Targeting Ce(PROP) at which patients lose consciousness with effect-site-controlled TCI does not translate into an immediate constant effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.