Abstract

Knowledge of thermodynamic properties as well as parameters such as energy density and power flow isimportant for modeling thermal plasmas of fluoroalkylamine-air mixtures. In this paper, these thermodynamic properties of fluoroalkylamine-air mixture plasmas are calculated in a temperature range of 500 K to 20,000 K at atmospheric pressure and local thermodynamic equilibrium (LTE). The Gibbs free energy minimization method is used to determine the chemical equilibrium compositions of the plasmas that are needed to calculate the thermodynamic properties. These thermodynamic properties are then used to calculate the energy density and power flow of these plasmas. The variation of the energy density is related to the variations of the density and mass enthalpy. We notice that, this energy density increases with the percentage of air in the mixture for temperatures higher than 7000 K. The power flow, which depends also on density, enthalpy mass and sound speed, increases with the percentage of air in the same temperature range. Energy density and power flow results show that increasing air percentage in the mixture can be more interesting for damaging gaseous chemical species such as CF2, CO, HCN, and HF appearing at low temperatures with high concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.