Abstract

ABSTRACT Aerogel is an innovative superinsulating material with extremely low thermal conductivity. Currently the cost of aerogel insulation is much higher than the cost of conventional insulation materials, which hinders their widespread application in buildings. In this research, an economical translucent aerogel glazing unit consisting of two clear boundary glass panes and a composite aerogel interlayer was developed, and its thermal and energy performance was studied numerically and experimentally. The results demonstrate that a translucent aerogel glazing with a 8 mm thick composite aerogel interlayer can perform better than a high performance double pane glazing, a typical double pane glazing and the corresponding opal glazing for heating load reduction under a shaded condition, but can only notably outperform an opal glazing for improving building energy performance in heating dominated climate zones, and in the heating period. It also reveals that applying the translucent aerogel glazing is a viable energy efficiency measure mainly for shaded glazing areas, or the glazing areas requiring solar radiation control to prevent sunlight glare. The outcome of this research can give engineers and architects a whole picture about translucent aerogel glazing, especially about the appropriate means of incorporating them into a low energy building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call