Abstract

Texture formation through strain induced boundary migration (SIBM) was investigated. Temper rolling reduction before final annealing for SIBM was varied between 0 and 26% and grain sizes and textures were measured using EBSD. In the specimen which was temper rolled to 5%, in which grain growth by SIBM occurred most efficiently, a strong Goss component (which was a minor component after rolling), developed during annealing. From the EBSD image quality analysis, it was found that stored energy increased significantly in the Goss component with strain (from 5 to 9 %), whereas it was always relatively small in the D-Cube component ({001}<110>), compared to Goss and g-fibre components. Based on these results, a mechanism of grain growth by SIBM was suggested. Texture evolution during annealing could thus be explained by the hypothesis, speculated from the analysis of orientation stability, that D-Cube grains are associated with more homogeneous dislocations distributions than Goss grains, in which the co-existence of high and low dislocation density zones could favour grain growth by SIBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.