Abstract

We study the effect of the tensor correlation using a mean-field-type model and a shell model. To treat the tensor correlation in a mean-field-type model, we introduce single-particle states with the parity and charge mixing considering the pseudoscalar and isovector characters of the pion, which mediates the tensor force. We study closed-shell and sub-closed-shell oxygen isotopes and find that a sizable attractive energy from the tensor force is obtained by introducing the parity and charge mixing. We also perform a shell model calculation up to two-particle–two-hole configurations. A large attraction energy is obtained for 16 O when we introduce single-particle wave functions with narrow widths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.