Abstract

Carbon tannin-lignin-formaldehyde (TLF) gels were obtained for the first time by carbonization of organic xerogels synthesized by sol-gel condensation of formaldehyde with polyphenolic substances isolated from abies wood and bark – ethanol lignin and condensed tannins. The effect of the mass ratio of the tannins/lignin (T/L) components in the range 1:0 – 1:2 on the specific surface areas, porous volume, apparent density, and microstructure of carbon tannin-lignin-formaldehyde gels has been studied. It was found that the density of the carbon gels increases from 0.52 to 0.60 g/cm3 with a rises in the T/L ratio from 1:0 to 1:0.2 and 1:0.5 in the initial gel and then decreases to 0.20 and 0.13 g/cm3 with an increase in the lignin content to T/L ratios of 1:1 and 1:2, respectively. The study of the porous structure of carbon gels by the BET method showed that the carbon TLF gel obtained at a T/L ratio 1:2 is characterized by the highest specific surface area (538 m2/g). Using scanning electron microscopy, the structures of TF and TLF carbon gels have been studied. It has been established that the size of globular particles has a decisive influence on the structure of gels. The size of the globule particles increases with increasing of lignin content in the composition of the tannin-lignin-formaldehyde gel that leads to the formation of a less ordered structure of the carbon gel. The porous structure of TLF carbon gels obtained from abies polyphenolic substances can be regulated by varying the ratio of tannins:lignin. The obtained carbon gels can be used as sorbents and catalyst supports

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.