Abstract

This article present the results of studies of the process of wire drawing from the PdNi-5 alloy, performed using computer simulation in the DEFORM 3D software package. В качестве материала для исследований использовали сплав с содержанием 95% палладия и 5% никеля. An alloy with a content of 95% palladium and 5% nickel was a material for research. The patterns of changes in the stress-strain state for the current processing mode determined, and a more rational drawing mode with a redistribution of drawing coefficients along transitions proposed. For the proposed regime, using the created model, the values of drawing stresses, drawing forces and Cockcroft-Latham criterion determined. It was found that the stress distribution in the deformation zone corresponds to the generally accepted laws of their change, and their maximum values are realized in the metal located in the calibrating zone of the drawing die. In addition was revealed that the stresses in the current mode have limit values at the second and fourth passes. The redistribution of deformation indicators in the proposed mode allowed reduce the magnitude of these stresses and, thereby, reduce the likelihood of wire breaks. The maximum value of the Cockcroft-Latham criterion is achieved in the last transitions, but at the same time, destruction will not occur, since they do not exceed the limit value. The drawing force also decreases with the implementation of the proposed mode and does not exceed the permissible values regulated by the technical characteristics of the equipment. Since it is the proposed mode of wire drawing, it is characterized by a decrease in energy power indicators and the likelihood of wire breakage in the process of metal deformation it can be recommend it for implementation in existing production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.