Abstract

Steel structures with light weight, high rigidity, and easy assembly have become the first choice for large-span complex building materials. At the same time, transparent materials are widely used for the sake of practicality and aesthetics. However, steel structures will be deformed due to changes in temperature, which will affect the accuracy of closure. The components are restricted from free deformation as a result of multiple statically indeterminate structures. A safety hazard will occur if the residual temperature stress is not released. At present, the strain law of open-air steel structures caused by temperature change is still unclear, and the corresponding temperature–strain model has not been established. This paper is based on the third-phase reconstruction and expansion project of Taiyuan Wusu Airport in Xiaodian District, Taiyuan City, Shanxi Province (37°45′ N, 112°38′ E, average altitude of 774 m), winter long time series temperature measured data, deduced daily temperature change laws, and the established relationship model between air temperature and steel surface temperature. Based on the measured data of long-term stress and strain in winter, the strain law of open-air steel columns under temperature change is discussed. According to the results, the air temperature can be utilized to determine the strain of the open-air steel column during winter. The determination coefficient of the temperature–stress model can reach 0.868, and the radial bending stress caused by the change in daily temperature cannot be ignored, accounting for 15.7% of the radial stress at the same time, which can provide a reference for stress calculations of similar structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call