Abstract

Electron stimulated desorption, Auger line shape analysis, and electron loss spectroscopy measurements are reported for the electron activated stepwise oxidation and nitridation of the Si(111) surface. In ESD it is found that appreciable levels of surface hydrogen can be present which can lead to hydroxyl formation upon oxidation. The hydroxyl rich films are unstable in an electron beam, while surfaces oxidized with activated oxygen, where no OH is formed, are much more stable. The nitrided films are always stable in the electron beam even though there too hydrogen is always found. On the OH-free oxide, ESD shows two chemically distinct O species, one thought to be SiO2 and the other adsorbed O2 or a chemical intermediate. The Si(L23VV) Auger spectra for both the oxide and nitride are treated by background subtraction, integration, deconvolution, and subtraction of the elemental part of the spectrum, as a function of reaction time over a well controlled series of reaction steps. The Auger spectra for both oxide and nitride films suggest that in the earliest stages of reaction, the reacted film is made up of low coordination intermediates which gradually evolve to the stoichiometric compound as the coordination increases. In loss spectroscopy, both the Si(L23) core loss and the near elastic loss were measured. The L23 core loss shows the same gradual evolution to the oxide seen in the Auger results, with an intermediate oxidation state dominating in the early stages of reaction. The near elastic loss spectra, by contrast, quickly saturate in the early stages of reaction to the final oxide spectrum which is characterized by features both of the full oxide and a suboxide. Similar results are found for the nitride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.