Abstract
The volatiles of Brown rice plant hopper (BRPH) itself is an important evidence for BRPH electronic nose detection. However, during infestation, BRPH always sucks the juice from the rice stem, therefore, a study on the similarity between BRPH’s volatiles and undamaged rice stem volatiles might help determine whether the volatile contents of BRPH would be influenced by the sucking of the rice stem juice. If so, recognizing BRPH from rice stem should be a crucial step to reduce the misjudgment of BRPH occurrence prediction by using electronic nose, which has not been reported until now. This paper used an electronic nose (PEN3) sample of the volatile of U3IN (under the 3th-instar nymphs), O3IN (over the 3th-instar nymphs) and healthy rice stem. Hierarchical clustering analysis (HCA), Loading analysis (Loadings), principal component analysis (PCA), k-nearest neighbor (KNN), probabilistic neural network (PNN), and support vector machine (SVM) were used for data analysis. HCA, Loadings, and PCA results proved that certain similarities exist between volatiles of rice stem and BRPH, Loadings and PCA results also indicated the volatile similarity between O3IN and rice stem is stronger than the volatile similarity between U3IN and rice stem. To reduce the redundant information and improve computation efficiency, according to Loadings and PCA results, sensor R5 of electronic nose has been be removed, then, the fist four principle components has been kept as the feature values. KNN, PNN and SVM all can recognize rice stem, O3IN, and U3IN effectively, however, KNN and PNN are more fit to solve the problem of rice stem and BRHP recognition than SVM. This experiment results proved that certain similarities exist between volatiles of rice stem and BRPH, also figured out the feasible way to recognize rice stem and BRPH, which could provide a reference for further research of BRPH prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.