Abstract

To reduce transportation costs for building a lunar base station, it is important to utilise in-situ resources like lunar regolith. Lunar regolith can be used to create a concrete-like material by means of geopolymerization. For application of geopolymerizing mixtures, the rheology of the slurry must be known in advance. This article investigates the rheology of mixtures of lunar dust simulants with water, NaOH (as alkaline agent) and urea (as superplasticizer). The rheology of all the mixtures can be approximated with the Bingham Model. Aging has a dramatic effect on the rheology of the water + simulant mixture and, after 2 days, the yield stress decreases by six times. The presence of NaOH, on the contrary, increases both the apparent viscosity and the yield stress as it promotes geopolymerization. The addition of urea reduces the viscosity by 25%, but it has a limited effect on the yield stress. These findings can enable the design of construction 3D printers on the moon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call