Abstract

In the present study, the capabilities of strong cation-exchange and strong anion-exchange sorbents for solid-phase extraction (SPE) have been evaluated for the selective retention of benzotriazoles (BTRs), benzothiazoles (BTs) and benzenesulfonamides (BSAs), which are a group of neutral analytes with interesting properties such as high polarity and the capability of delocalizing electron density. The retention of these analytes has been compared in both sorbents for the first time, using a SPE procedure specially designed to promote ionic retention of the analytes with the objective of including a washing step with an organic solvent to eliminate interferences retained by hydrophobic interactions.As a result, ionic interactions between the analytes and both sorbents were observed, which allowed the successful introduction of a washing step using methanol in the SPE procedure even when most of the analytes were in their neutral state under SPE conditions. Consequently, a method was developed and further validated for each sorbent using liquid chromatography coupled to high-resolution mass spectrometry (LC–HRMS). Apart from the development of an improved method, special attention was paid to the discussion of the interactions present between the sorbents and each group of analytes to explain how these analytes in their neutral state might develop ionic interactions with the sorbents. At the end, the use of these sorbents helped to simplify previous developed methods where hydrophobic/hydrophilic sorbents were used, obtaining enhanced results when evaluated in river water and effluent and influent wastewaters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.