Abstract

Aerobically growing Escherichia coli generates superoxide flux into the periplasm via the oxidation of dihydromenaquinone and simultaneously carries out continuous transmembrane cycling of glutathione (GSH). Here we have shown that, under the conditions of a gradual decrease in dissolved oxygen (dO2), characteristic of batch culture, the global regulatory system ArcB/ArcA can play an important role in the coordinated control of extracellular superoxide and GSH fluxes and their interaction with intracellular antioxidant systems. The lowest superoxide production was observed in the menA and arcB mutants, while the atpA, atpC and atpE mutants generated superoxide 1.3–1.5 times faster than the parent. The share of exported glutathione in the ubiC, atpA, atpC, and atpE mutants was 2–3 times higher compared to the parent. A high direct correlation (r = 0.87, p = 0.01) between extracellular superoxide and GSH was revealed. The menA and arcB mutants, as well as the cydD mutant lacking the GSH export system CydDC, were not capable of GSH excretion with a decrease in dO2, which indicates a positive control of GSH export by ArcB. In contrast, ArcB downregulates sodA, therefore, an inverse correlation (r = −0.86, p = 0.013) between superoxide production and sodA expression was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call