Abstract

Results from the first study of the regional air quality in Morelos state (located south of Mexico City) are presented. Criteria pollutants concentrations were measured at several sites within Morelos in February and March of 2007 and 2009; meteorological data was also collected along the state for the same time periods; additionally, a coupled meteorology–chemistry model (Mesoscale Climate Chemistry Model, MCCM) was used to gain understanding on the atmospheric processes occurring in the region. In general, concentrations of almost all the monitored pollutants (O3, NOx, CO, SO2, PM) remained below the Mexican air quality standards during the campaign; however, relatively high concentrations of ozone (8-hour average concentrations above the 60ppb level several times during the campaigns, i.e. exceeding the World Health Organization and the European Union maximum levels) were observed even at sites with very low reported local emissions. In fact, there is evidence that a large percentage of Morelos vegetation was probably exposed to unhealthy ozone levels (estimated AOT40 levels above the 3ppmh critical limit). The MCCM qualitatively reproduced ozone daily variations in the sites with an urban component; though it consistently overestimated the ozone concentration in all the sites in Morelos. This is probably because the lack of an updated and detailed emission inventory for the state. The main wind patterns in the region corresponded to the mountain–valley system (downslope flows at night and during the first hours of the day, and upslope flows in the afternoon). At times, Morelos was affected by emissions from surrounding states (Distrito Federal or Puebla). The results are indicative of an efficient transport of ozone and its precursors at a regional level. They also suggest that the state is divided in two atmospheric basins by the Sierras de Tepoztlán, Texcal and Monte Negro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.