Abstract

Superconductors have entered into many applications and advanced technological fields, due to their excellent properties identified by zero resistance and expelling the magnetic field applied to them. Superconductivity is a viable technology to prevent energy losses contributed by electrical resistivity. Also, the magnetic flux is repelled entirely out of the body of superconducting material which makes the Meissner Effect. High-Temperature Superconductors (HTS) have become the focus of researchers and scientists. This is because it uses liquid nitrogen "LN" in cooling, which gives it significant critical temperatures compared to traditional materials based on liquid helium "LHe" in cooling. From this point of view, began to employ these materials in most disciplines and modern technologies. In this article, the phenomenon of Superconductivity will define with explain its most prominent characteristics and focus on the preparation of the HTS (Yttrium-Barium-Copper-Oxide) compound (Abbreviated as YBCO) in different methods "The Sol-Gel and Citrate Pyrolysis Methods", to creating ultrafine superconducting (Y-123) powders. Generally known that by adopting any preparation technique, the superconducting transition temperature (Tc) value of ≈ 92 K could be achieved in the bulk samples. The Citrate Pyrolysis method is a unique route to prepare reactive precursor mixtures through an ignition process of a concentrated aqueous solution including metallic ions of stoichiometric composition. This procedure enables to synthesize of highly homogeneous and fine powders for functional materials, in comparison to the Sol-gel technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.