Abstract

AbstractIn a previous study, it was found that monodisperse polystyrene (PSt) hollow particles can be prepared under special conditions by combining a Shirasu Porous Glass (SPG) emulsification technique and subsequent suspension polymerization process. That is, a mixture of styrene (St), N,N‐dimethylamino ethyl methacrylate (DMAEMA), hexadecane (HD), and initiator N, N′‐azobis(2,4‐dimethylvaleronitrile) (ADVN) was used as the dispersed phase in an aqueous phase containing poly(vinyl pyrrolidone) (PVP), sodium lauryl sulfate (SLS), and water‐soluble inhibitor. The dispersed phase was created by pushing the oil phase through the uniform pores of an SPG membrane into the continuous phase to form uniform droplets. Then, the droplets were polymerized at 70°C. It has been puzzling that hollow microspheres were obtained only when sodium nitrite (NaNO2) was used as a water‐soluble inhibitor, while one‐hole particles were formed when hydroquinone (HQ) or diaminophenylene (DAP) was used. In this study, the mechanism of formation of the hollow microspheres was verified by measuring the variation of diameter, molecular weight distribution, and monomer conversion, and by observing morphological changes during the polymerization, as well as by changing the type and amount of hydrophilic monomer, and initiator. It was found that the diameter of the oil droplets decreased, and a large amount of secondary new particles formed immediately after polymerization started in the case of NaNO2. However, there was no such apparent behavior to be observed when HQ or DAP was used. It was determined that the hollow particles formed due to the rapid phase separation between PSt and HD, and as a consequence, a large amount of monomer diffused into the aqueous phase to form the secondary particles. Rapid phase separation confined the HD inside the droplets, a nonequilibrium morphology. On the other hand, one‐hole particles, representing an equilibrium morphology, formed when the phase separation occurred slowly because a lot of monomer existed inside of the droplets to allow mobility of the PSt. The addition of DMAEMA allowed the hollow particles to be formed more easily by decreasing the interfacial tension between the copolymer and aqueous phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1530–1543, 2002

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.