Abstract

The aims of this work were to evaluate the reactivity of sugarcane straw ashes (SCSA) burned under controlled conditions and to analyze their reactivity in blended cement and hydrated lime pastes by thermogravimetric analysis (TG) and calorimetry. Four different ashes were produced, and burned at 600 °C, 700 °C, 800 °C and 900 °C (SCSA600, SCSA700, SCSA800 and SCSA900, respectively). These ashes were characterized by X-ray fluorescence spectroscopy, X-ray diffractometry, particle size distribution by laser diffraction and specific area surfaces to assess their potential interest in the partial replacement of inorganic binders (Portland cement (OPC) and hydrated lime). The hydrated lime pastes were subjected to scanning electron microscopy (SEM) and TG. The blended cement pastes were analyzed by TG and calorimetry, compressive strength testing and mercury intrusion porosimetry. High lime fixation percentages were observed in the hydrated lime and OPC pastes and were higher than 75% and 50% for the ashes burned at 600 °C and 700 °C, respectively. Calorimetry showed a delay in the heat release of SCSA600 and SCSA700 compared to the control paste. These pastes also had higher compressive strength and a smaller total pore volume. The results indicate the positive response of preparing sugar cane ashes under controlled conditions (mainly for straw calcined within the 600–700 °C range) for their use as pozzolanic addition by partially replacing inorganic binders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call