Abstract

A comparative investigation on the photophysical properties of a quinoxaline derivative 4,4'-((1E,1'E)-quinoxaline-2,3-diylbis(ethene-2,1-diyl))bis(N,N-dimethylaniline) (QDMA2) was performed by employing many spectroscopies. Based on the pump-dump/push-probe measurement, it is found that a solvent-stabilized charge-transfer state can participate in the relaxation of excited QDMA2 with increasing solvent polarity. Meanwhile, the aggregated QDMA2 molecules were engineered into the organic light-emitting diode test, which showed a correlated color temperature value of 1875 K. With the help of a diamond anvil cell, the pressure-dependent photoluminescence of aggregated QDMA2 shows that the intermolecular interaction can affect the color and intensity of photoluminescence through adjusting the band gap and irradiative channel of the aggregated molecules. These results are important for understanding the structure-property relationships and the rational design of functional materials for optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call