Abstract

A new nanoscale silicon-based modulator has been investigated at different temperatures. In addition to these two advantages, nanoscale dimensions (versus MEMS temperature sensors) and integrated silicon-based material (versus polymers), the third novelty of such optoelectronic device is that it can be activated as a Silicon-On-Insulator Photoactivated Modulator (SOIPAM) or as a Silicon-On-Insulator Thermoactivated Modulator (SOITAM). In this work, static and time dependent temperature effects on the current have been investigated. The aim of the time dependent temperature simulation was to set a temporal pulse and to check, for given dimensions, how much time would it take for the temperature profile and for the change in the electrons’ concentration to come back to the steady state. Assuring that the thermal response is fast enough, the device can be operated as a modulator via thermal stimulation or, on the other hand, can be used as thermal sensor/imager. We present here the design, simulation, and model of the second generation which seems capable of speeding up the processing capabilities. This novel device can serve as a building block towards the development of optical/thermal data processing while breaking through the way to all optic processors based on silicon chips that are fabricated via typical microelectronics fabrication process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.