Abstract
Abstract A series of three-armed star polystyrene-block-poly(n-butylacrylate) copolymers (PS-b-PBA)3 were synthesized to study the phase-transition behavior of the copolymers. The order-to-disorder transition temperature has been determined by oscillatory at different temperatures and dynamic temperature sweep at a fixed frequency. Moreover, the micro-phase separation in the block copolymers has been evaluated by time–temperature superposition, while the free volume and the active energy of the copolymers have been calculated. Interestingly, active energy decreased with the increase in the molecular weight of the PBA components. To further determine the order-to-disorder transition temperature precisely, small angle X-ray scattering was performed at different temperatures. These results confirm that the chain mobility of the star-shaped copolymers is strongly dependent on the arm molecular weight of the star polymers, which will be beneficial for the processing and material preparation of the block copolymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.