Abstract

For the purpose of monitoring the level of plasma impurity (especially tungsten) and its distribution reconstruction at tokamaks (ITER in particular), a Soft X-Ray (SXR) tomographic diagnostics based on Gas Electron Multiplier (GEM) detectors with energy discrimination has been extensively considered for a while. Coupled with advanced electronics, GEM detectors offer excellent time and space resolution, as well as a charge spectrum from which the SXR photon spectrum can be deconvolved. In addition, they are less subjected to a neutron damage as compared to standard semiconductor diodes. This contribution highlights the latest studies supporting the development of such diagnostics focusing on laboratory tests to examine: (a) the impact of GEM holes geometry on the properties and distribution of the electron avalanche; (b) the effect of the high rate photon flux on GEM foil performance; and (c) the optimal electric field distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.