Abstract

Noncovalent interactions between drugs and proteins play significant roles for drug metabolisms and drug discoveries. Mass spectrometry has been a commonly used method for studying noncovalent interactions. However, the harsh ionization process in electrospray ionization mass spectrometry (ESI-MS) is not conducive to the preservation of noncovalent and unstable biomolecular complexes compared with the cold spray ionization mass spectrometry (CSI-MS). A cold spray ionization providing a stable solvation-ionization at low temperature is milder than ESI, which was more suitable for studying noncovalent drug-protein complexes with exact stoichiometries. In this paper, we apply CSI-MS to explore the interactions of ginsenosides toward amyloid-β-peptide (Aβ) and clarify the therapeutic effect of ginsenosides on Alzheimer's disease (AD) at the molecular level for the first time. The interactions of ginsenosides with Aβ were performed by CSI-MS and ESI-MS, respectively. The ginsenosides Rg1 bounded to Aβ at the stoichiometries of 1:1 to 5:1 could be characterized by CSI-MS, while dehydration products are more readily available by ESI-MS. The binding force depends on the number of glycosyls and the type of ginsenosides. The relative binding affinities were sorted in order as follows: Rg1 ≈ Re > Rd ≈ Rg2 > Rh2, protopanaxatriol by competition experiments, which were supported by molecular docking experiment. CSI-MS is expected to be a more appropriate approach to determine the weak but specific interactions of proteins with other natural products especially polyhydroxy compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call