Abstract

The degradation of the nearby generation of high‐density polyethylene (HDPE) loaded with 2.5% of carbon black (CB) content (ie, HDPE/CB composites) is studied experimentally with the end goal of radiation safety applications. The impact of various γ‐irradiation doses in the air on the nanostructure of free volume and durability has been researched. The free volume was evaluated utilizing the positron annihilation lifetime (PAL) technique while the durability was contemplated by measuring the mechanical properties such as strain, elongation at break, and tear resistance. The electrical conductivity was explored to demonstrate the impact of the irradiation dose on the conductivity of the samples. Surface morphology studies using a scanning electron microscope (SEM) showed the surface fracture of HDPE/CB composites for unirradiated and irradiated samples. The surface roughness of the HDPE/CB GMs increases with increasing the irradiation dose. Among various uses of HDPE/CB composites, sheets are liners of dumps used to dispose of interim storage for Low and Medium Level Waste of NORMs and TENORMs. HDPE Geomembrane liners proved its utilization from the results of present research of electrical, mechanical tests, and SEM morphology to have the required resistance to weather conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call